Horizontální dalekohled událostí -Event Horizon Telescope

z Wikipedie, otevřené encyklopedie

Horizontální dalekohled událostí
Teleskop horizontu událostí a globální pole mm-VLBI na Zemi.jpg
Event Horizon Telescope.svg
Alternativní názvy EHT Upravte to na Wikidata
webová stránka eventhorizontální dalekohled .org Upravte to na Wikidata
Dalekohledy Velké milimetrové pole
Atacama Atacama Pathfinder Experiment
Heinrich Hertz Submilimetrový dalekohled
IRAM 30m dalekohled
James Clerk Maxwell Teleskop
Velký milimetrový dalekohled
Jižní pól
Submilimetrové pole Upravte to na Wikidata
Související média na Wikimedia Commons

Event Horizon Telescope ( EHT ) je velké pole dalekohledů skládající se z globální sítě radioteleskopů . Projekt EHT kombinuje data z několika stanic interferometrie s velmi dlouhou základní linií (VLBI) kolem Země, které tvoří kombinované pole s úhlovým rozlišením dostatečným k pozorování objektů o velikosti horizontu událostí supermasivní černé díry . Pozorovací cíle projektu zahrnují dvě černé díry s největším úhlovým průměrem, jak byl pozorován ze Země: černá díra ve středu veleobří eliptické galaxie . Messier 87 (M87*, vyslovováno "M87-Star") a Sagittarius A* (Sgr A*, vyslovováno "Sagittarius A-Star") ve středu Mléčné dráhy .

Projekt Event Horizon Telescope je mezinárodní spolupráce zahájená v roce 2009 po dlouhém období teoretického a technického vývoje. Co se týče teorie, práce na orbitě fotonů a první simulace toho, jak by černá díra vypadala, pokročily k předpovědím zobrazování VLBI pro černou díru v galaktickém centru, Sgr A*. Technický pokrok v rádiovém pozorování se posunul od první detekce Sgr A* přes VLBI na postupně kratších vlnových délkách, což nakonec vedlo k detekci struktury horizontu jak u Sgr A*, tak u M87. Spolupráce nyní zahrnuje více než 300 členů, 60 institucí působících ve více než 20 zemích a regionech.

První snímek černé díry v centru galaxie Messier 87 byl publikován společností EHT Collaboration dne 10. dubna 2019 v sérii šesti vědeckých publikací. Pole provedlo toto pozorování při vlnové délce 1,3 mm a s teoretickým rozlišením omezeným na difrakci 25 mikroobloukových sekund . V březnu 2021 Collaboration poprvé představila polarizovaný snímek černé díry, který může pomoci lépe odhalit síly vedoucí ke vzniku kvasarů . Budoucí plány zahrnují zlepšení rozlišení pole přidáním nových dalekohledů a pozorováním na kratších vlnových délkách. Dne 12. května 2022 astronomové odhalili první snímek supermasivní černé díry v centru Mléčné dráhy, Sagittarius A* .

Pole dalekohledu

Schematický diagram VLBI mechanismu EHT. Každá anténa, rozprostřená na obrovské vzdálenosti, má extrémně přesné atomové hodiny . Analogové signály shromážděné anténouou převedeny na digitální signály a uloženy na pevné disky spolu s časovými signály poskytovanými atomovými hodinami. Pevné diskyou poté odeslány na centrální místo k synchronizaci. Snímek z astronomického pozorování se získává zpracováním dat shromážděných z více míst.
Pozorování EHT během své vícevlnné kampaně M87 v roce 2017 rozložil přístroj z nižší (EHT/ALMA/SMA) na vyšší (VERITAS) frekvenci. (Fermi-LAT v režimu nepřetržitého průzkumu) (data také v upravených juliánských dnech )
Měkký rentgenový snímek Sagittarius A* (uprostřed) a dvě světelné ozvěny z nedávné exploze (zakroužkováno)

EHT se skládá z mnoha rádiových observatoří nebo radioteleskopických zařízení po celém světě, které spolupracují na výrobě vysoce citlivého dalekohledu s vysokým úhlovým rozlišením. Prostřednictvím techniky interferometrie s velmi dlouhou základní linií (VLBI) může mnoho nezávislých rádiových antén oddělených stovkami nebo tisíci kilometrů fungovat jako sfázované pole, virtuální dalekohled, který lze nasměrovat elektronicky, s efektivní aperturou o průměru celou planetu, čímž se podstatně zlepšilo její úhlové rozlišení. Toto úsilí zahrnuje vývoj a nasazení submilimetrových přijímačů s duální polarizací, vysoce stabilních frekvenčních standardů umožňujících velmi dlouhou základní interferometrii na 230–450 GHz, VLBI backendů a rekordérů s vyšší šířkou pásma, stejně jako zprovoznění nových submilimetrových VLBI lokalit.

Každý rok od svého prvního zachycení dat v roce 2006 se pole EHT přesunulo a přidalo další observatoře do své globální sítě radioteleskopů. Očekávalo se, že první snímek supermasivní černé díry Mléčné dráhy, Sagittarius A*, bude vytvořen z dat pořízených v dubnu 2017, ale protože během australské zimy (duben až říjen) neprobíhají žádné lety na jižní pól ani z něj nelétají. úplný soubor dat nemohl být zpracován až do prosince 2017, kdy dorazila zásilka dat z dalekohledu jižního pólu .

Data shromážděná na pevných discíchou přepravována komerčními nákladními letadly (tzv. sneakernet ) z různých dalekohledů do observatoře MIT Haystack Observatory a Institutu Maxe Plancka pro radioastronomii, kdeou data vzájemně korelována a analyzována na mřížkovém počítači vyrobeném z asi 800 CPU, všechny připojené prostřednictvím sítě 40 Gbit/s .

Kvůli pandemii COVID-19, počasí a nebeské mechanice byla pozorovací kampaň v roce 2020 odložena na březen 2021.

Messier 87*

Série snímků představujících dosažené zvětšení (jako byste se snažili vidět tenisový míček na Měsíci). Začíná v levém horním rohu a pohybuje se proti směru hodinových ručiček, aby nakonec skončil v pravém horním rohu.
Snímek M87* vytvořený z dat shromážděných dalekohledem Event Horizon Telescope
Pohled na černou díru M87* v polarizovaném světle

The Event Horizon Telescope Collaboration oznámila své první výsledky na šesti souběžných tiskových konferencích po celém světě dne 10. dubna 2019. Oznámení obsahovalo první přímý snímek černé díry, který ukazoval supermasivní černou díru ve středu Messier 87, označenou M87*. Vědecké výsledky byly prezentovány v sérii šesti článků publikovaných v The Astrophysical Journal Letters . V oblasti 6σ byla pozorována černá díra rotující ve směru hodinových ručiček .

Snímek poskytl test pro obecnou teorii relativity Alberta Einsteina za extrémních podmínek. Studie již dříve testovaly obecnou relativitu sledováním pohybů hvězd a plynových mračen poblíž okraje černé díry. Obraz černé díry však přibližuje pozorování ještě více k horizontu událostí. Relativita předpovídá temnou oblast podobnou stínu, způsobenou gravitačním ohybem a zachycením světla, která odpovídá pozorovanému obrazu. Publikovaný článek uvádí: "Celkově je pozorovaný obraz v souladu s očekáváním stínu rotující Kerrovy černé díry, jak předpovídá obecná teorie relativity." Paul TP Ho, člen představenstva EHT, řekl: "Jakmileme si byli jisti, žeme stín zobrazili, mohlime naše pozorování porovnat s rozsáhlými počítačovými modely, které zahrnují fyziku zborceného prostoru, přehřátou hmotu a silná magnetická pole. Mnoho funkcí pozorovaného obrazu překvapivě dobře odpovídá našemu teoretickému chápání."

Snímek také poskytl nová měření hmotnosti a průměru M87*. EHT změřilo hmotnost černé díry6,5 ± 0,7 miliardy hmotností Slunce a naměřil průměr jeho horizontu událostí přibližně 40 miliard kilometrů (270 AU; 0,0013 pc; 0,0042 ly), což je zhruba 2,5krát menší než stín, který vrhá, viděný ve středu snímku. Předchozí pozorování M87 ukázala, že jet velkého měřítka je nakloněn pod úhlem 17° vzhledem k linii pohledu pozorovatele a orientován na rovinu oblohy pod pozičním úhlem -72°. Ze zvýšené jasnosti jižní části prstence v důsledku relativistického paprsku emise blížícího se trychtýře stěny trychtýře EHT usoudil, že černá díra, která jet ukotvuje, se při pohledu ze Země točí ve směru hodinových ručiček. Simulace EHT umožňují prográdní i retrográdní rotaci vnitřního disku vzhledem k černé díře, přičemž vylučují rotaci nulových černých děr s použitím konzervativního minimálního výkonu paprsku 10 42 erg/s prostřednictvím procesu Blandford–Znajek .

Vytvoření obrazu z dat z řady radioteleskopů vyžaduje hodně matematické práce. Čtyři nezávislé týmy vytvořily snímky k posouzení spolehlivosti výsledků. Tyto metody zahrnovaly jak zavedený algoritmus v radioastronomii pro rekonstrukci obrazu známý jako CLEAN, vynalezený Janem Högbomem, tak samokalibrační metody zpracování obrazu pro astronomii, jako je algoritmus CHIRP vytvořený Katherine Boumanovou a dalšími. Algoritmy, které byly nakonec použity, byly algoritmus regularizované maximální věrohodnosti (RML) a algoritmus CLEAN .

V březnu 2020 astronomové navrhli vylepšený způsob, jak vidět více prstenců na prvním snímku černé díry. V březnu 2021 byla odhalena nová fotografie, která ukazuje, jak černá díra M87 vypadá v polarizovaném světle. Je to poprvé, co astronomové dokázali změřit polarizaci tak blízko okraje černé díry. Čáry na fotografii označují orientaci polarizace, která souvisí s magnetickým polem kolem stínu černé díry.

3C 279

EHT snímek archetypálního blazaru 3C 279 ukazující relativistický výtrysk dolů k jádru AGN obklopujícímu supermasivní černou díru.

V dubnu 2020 EHT zveřejnilo první snímky s rozlišením 20 mikroobloukových sekund archetypálního blazaru 3C 279, který pozoroval v dubnu 2017. Tyto snímky, vytvořené z pozorování během 4 nocí v dubnu 2017, odhalují jasné složky výtrysku, jehož projekce na pozorovatelskou rovinu vykazují zdánlivé nadsvětelné pohyby s rychlostí až 20 c. Takový zdánlivý nadsvětelný pohyb z relativistických emitorů, jako je přibližující se výtrysk, se vysvětluje tím, že emise pocházející blíže k pozorovateli (po proudu podél výtrysku) dohání emisi pocházející dále od pozorovatele (u základny výtrysku), když se výtrysk šíří blízko rychlosti. světla v malých úhlech k linii pohledu.

Kentaurus A

Obrázek Centaura A ukazuje jeho výtrysk černé díry v různých měřítcích

V červenci 2021 byly zveřejněny snímky s vysokým rozlišením výtrysku vytvořeného černou dírou sedící v centru Centaura A. S masou kolem5,5 × 10 7 M , černá díra není dostatečně velká na to, aby mohla pozorovat svůj prstenec jako u Messiera M87*, ale její výtrysk zasahuje i za svou hostitelskou galaxii, přičemž zůstává jako vysoce kolimovaný paprsek, který je předmětem studia. Bylo také pozorováno okrajové zjasnění paprsku, což by vyloučilo modely zrychlení částic, které nou schopny tento efekt reprodukovat. Obraz byl 16krát ostřejší než předchozí pozorování a využíval vlnovou délku 1,3 mm.

Střelec A*

Sagittarius A*, černá díra ve středu Mléčné dráhy

12. května 2022 EHT Collaboration odhalila snímek Sagittarius A*, supermasivní černé díry v centru galaxie Mléčná dráha . Černá díra je od Země vzdálena 27 000 světelných let; je tisíckrát menší než M87*. Sera Markoff, spolupředsedkyně vědecké rady EHT, řekla: "Máme dva zcela odlišné typy galaxií a dvě velmi odlišné hmoty černých děr, ale blízko okraje těchto černých děr vypadají úžasně podobně. To nám říká, že generál Relativita ovládá tyto objekty zblízka a jakékoli rozdíly, které vidíme dále, musí být způsobeny rozdíly v materiálu, který černé díry obklopuje.“

Spolupracující ústavy

EHT Collaboration se skládá z 13 zúčastněných institucí:

Mezi instituce přidružené k EHT patří:

Reference

externí odkazy